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Mission

INWeb – Brazilian National Institute of
Science and Technology for the Web

To develop models, algorithms and technologies to contribute
to the integration of the Web with our society. As a result, we
expect more effective and secure distribution of information,
more efficient and useful applications, so that the Web can
become a vector for social and economic changes in the
country.
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INWeb – National Institute of Science and
Technology for the Web
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Research Challenges

1 Identification, characterization and modeling of user
interests and behavioral patterns on the web as well as of
the social networks established among them.

2 Treatment of the information that circulates on the
various networks of the web.

3 Delivery of information in a satisfying way regardless of
time and place.
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InWeb – Research Tracks

1 Social Networks
(Coordinator: Virgilio Almeida)

2 User Behavior and Interaction Modeling
(Coordinator: Jussara Almeida)

3 Information Retrieval
(Coordinator: Nivio Ziviani)

4 Web Data Management
(Coordinator: Alberto Laender)

5 Parallel and Distributed Systems
(Coordinator: Dorgival Guedes)

6 Knowledge Discovery
(Coordinator: Wagner Meira Jr.)
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Knowledge Discovery @ InWeb

PIs

Loic Cerf
Wagner Meira Jr.
Raquel Melo-Minardi
Gisele Pappa
Adriano Pereira
Adriano Veloso

Researchers

PhD students: 8
MSc students: 11
Undergrads: 10
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Research, Development and Innovation

Research

Advance the state-of-the-art.

Development

Generate products.

Innovation

Evolve products by incorporating state-of-the-art results.
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Data

Tabular

categorical
numeric

Text

Graphs

Sound

Image

Video
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Data
Challenges

Storage

Accessing

Engineering

Integration
Cleaning
Transformation

Visualization
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Curse of Dimensionality
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Curse of Dimensionality
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Data Mining

Concept

Automatic extraction of knowledge or patterns that are
interesting (novel, useful, implicit, etc.) from large volumes of
data.

Tasks

Data engineering

Characterization

Prediction
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Data Mining Models

Concept

A model aims to represent the nature or reality from a specific
perspective. A model is an artificial construction where all
extraneous details have been removed or abstracted, while
keeping the key features necessary for analysis and
understanding.
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Data Mining

Paradigms

Combinatorial

Probabilistic

Algebraic

Graph-based
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Combinatorial Models

Problem

Determine the sets of items that occur simultaneously in
transactions.

Strategy

Traverse the search space of sets of items determining whether
they co-occur.

Challenge

There are O(2n) possible sets given n items.
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Combinatorial Models

A B C D E

ABCD ABCE ABDE ACDE BCDE

AB DEAC AD AE BC BD BE CD CE

CDEBDEBCEBCDADEACEACDABEABDABC

ABCDE
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Combinatorial Models

B(6) C(4) D(4) E(5)A(4)

ABCDE

ABCD ABCE ACDE BCDE

CDEBCDACEACDABC

AC(2) DE(3)CE(3)BE(5)BD(4)BC(4)AE(4)AD(3)AB(4)

ABD(3) ABE(4) ADE(3) BCE(3) BDE(3)

ABDE(3)

CD(2)
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Probabilistic Models

Problem

Determine the groups of entities that are similar and may be
handled together.

Strategy

Model the likelihood ot belonging to a group (cluster) as a
probabilistic function.

Challenge

We should determine an expressive yet simple to represent and
manipulate model.
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Probabilistic Models
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Algebraic Models

Problem

Predict the class of an entity, given a set of known entities
previously assessed.

Strategy

Create a prediction model that partitions the entities into
classes and use the model to classify unknown samples.

Challenge

How to couple with bias and variance?
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Graph-based Models

Problem

Determine the groups of entities that are similar and may be
handled together.

Strategy

Model the relations among entities as a weighted graph and
partition the graph looking for minimum cuts.

Challenge

Weight model.
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Graph-based Models
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Data Mining
Research, Development and Innovation

Huge number of relevant applications

Broad spectrum of scenarios

Data volume, nature and complexity variety

Privacy, security and data quality issues

Techniques demand data-dependent and manual
parametrization
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Data Mining and Social Networks

How may data mining models and algorithms account for:

Social theories?

Invariants?

Premises?

Dynamic behavior?
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Research Methodology
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Social Network Mining Challenges

Fact

The evolution of the Internet and the Web makes them not
only very popular, but also dynamic and diversified social media
that may be used to sense and understand the society.

Mining social networks must deal with:

Dynamic behavior

Complex relationships

Heterogeneous data

Incomplete information

Noisy data

Lack of scalability
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Sentiment Analysis
SIGIR’14

Definition

Automatically extraction of opinions, sentiments, attitudes,
and emotions expressed in text messages (i.e., Twitter).

Motivation

It allows us to track products, brands and people to
determine whether they are viewed positively or negatively.

Problem
Content is created almost at the same time the event is
happening in the real world.

Keeping track of sentiment streams is useful for
advertising.
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Classifying Sentiment Streams

Effective classification requires:

Updating the training-set to mitigate drifts.
Updating the classifier accordingly.
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Research Questions

1 Effort:

How to reduce labeling effort?

2 Accuracy:

How to select messages to be kept and discarded?
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Dealing with Drifts

Two properties are necessary in order to produce classifiers
that are robust to drifts:

Adaptiveness:

The ability to adapt itself to drifts.

Memorability:

The ability to recover itself from drifts.
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Dealing with Drifts

Two properties are necessary in order to produce classifiers
that are robust to drifts:

Adaptiveness:

The ability to adapt itself to drifts.
The training-set must contain fresh messages.

Memorability:

The ability to recover itself from drifts.
The training-set must contain pre-drift messages.

Improving both properties simultaneously may lead to a
conflict-objective problem.

Improve adaptiveness may hurt memorability, and
vice-versa.
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Pareto and Kaldor-Hicks Principles
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Utility Measures

Distance in space:

How similar message tj is to the newest message tn.

Us(tj) =
|R(tn)∩R(tj)|

|R(tn)|

Distance in time:

How fresh is the message.

Ut(tj) =
γ(tj)
γ(tn)

.

γ(tj) returns the time in which message tj arrived.

Random permutation of messages:

Ur(tj) =
α(tj)
|Dn|

α(tj) returns the position of tj in the shuffle.
Dn is the training set at time step n.
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Utility Measures

1 At each time step n:
1 Place candidate messages in the utility space.
2 Select messages in the Pareto frontier.
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Evaluation

MSE and RAM-Hours
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Evaluation

MSE and Labeling Effort
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Social Network Mining Challenges

Mining social networks must deal with:

Dynamic behavior

Complex relationships

Heterogeneous data

Incomplete information

Noisy data

Lack of scalability
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Structural Correlation Pattern Mining
VLDB’12

Motivation

Attribute patterns provide correlations in terms of the
content

Topological patterns provide correlations in terms of the
network structure

Both patterns refer to the same entities and information

How can we analyze them together?
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Structural Correlation Patterns

Problem

Determine attribute sets associated with the existence of dense
connected subgraphs.
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Structural Correlation Patterns
Co-authorship in InWeb

Adriano Pereira

Adriano Veloso

Alberto Laender

Altigran Silva

Arnaldo Araujo

Berthier Ribeiro

Carlos Heuser

Clodoveu Davis

Cristina Murta

Dorgival Guedes

Edleno Moura

Evandrino Barros

Gisele Pappa

Joao Cavalcanti

Jose Palazzo

Jussara Almeida

Leandro Wives

Marcos Goncalves

Mirella Moro

Nivio Ziviani

Raquel Prates

Renata Galante

Renato Ferreira

Virgilio Almeida
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Structural Correlation Pattern Mining

What is the probability of a vertex that has an attribute set S
be part of a correlated dense subgraph?

An SCP is a pair (attribute set, dense subgraph)

Dense subgraphs are defined as quasi-cliques

Problem:

Identifying attributes and their respective structural patterns
(i.e., dense subgraphs) given a set of constraints:

Attribute set frequency, dense subgraph size and density, ε
(structural coverage), statistical significance of ε.
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Example: DBLP

attribute set support str. correlation stat. significance
search rank 420 0.19 635,349
perform file 404 0.14 555,067

structur index 404 0.14 555,067
search mine 413 0.14 490,932

us xml 400 0.11 442,638

(a) {search, rank} (b) {perform, system}
Apr 15, 2015
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Social Network Mining Challenges

Mining social networks must deal with:

Dynamic behavior

Complex relationships

Heterogeneous data

Incomplete information

Noisy data

Lack of scalability
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Impact of Visual Attributes on Diffusion
WebSci’14

Can visual attributes explain the diffusion of images?

Aesthetical: 12 properties (e.g., brightness, contrast,
sharpness)

Semantical: 85 concepts represented by image

Social: 12 features derived from the network
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Framework

Users Users

3 monthsUser
Monitor

Repin
Updater

User
Crawler

2 weeks

Pins Pins

Repins

Users Pins

Features

Aesthetics

Semantics

Social

Analyses

Extractors

PredictionsPins
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Accuracy in Predicting Popularity
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Visual Attributes are Complementary

435 356
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1321

Aesthetics Semantics
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Popularity is a factor
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Social Network Mining Challenges

Mining social networks must deal with:

Dynamic behavior

Complex relationships

Heterogeneous data

Incomplete information

Noisy data

Lack of scalability
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Knowledge Transfer to Sentiment Analysis
KDD’11, JIDM’11, ICWSM’13, and WSDM’14

Sentiment Analysis

Sentiment Analysis (or opinion mining) aims to interpret text
and predict polarity of the writer regarding a topic or entity.

Challenges

Language ambiguity

Dinamicity of discussions

Lack of labeled textual data

Is it possible to analyze sentiment without assessing
content?
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Knowledge Transfer to Sentiment Analysis
KDD’11, JIDM’11, ICWSM’13, and WSDM’14

Bias is inherent to most humans [Watson 1991], since they:

take a particular position regarding a subject

have a personal interest from the arguer in the outcome of
the argument or discussion.

lack proper balance and neutrality in argumentation

lack proper critical doubt

On polarized networks, bias and opinions are dependent!

Supporters of a candidate are likely to issue positive
opinions on him/her

Soccer team supporters act similarly
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Knowledge Transfer to Sentiment Analysis
KDD’11, JIDM’11, ICWSM’13, and WSDM’14

Bias is inherent to most humans [Watson 1991], since they:

take a particular position regarding a subject

have a personal interest from the arguer in the outcome of
the argument or discussion.

lack proper balance and neutrality in argumentation

lack proper critical doubt

On polarized networks, bias and opinions are dependent!

Supporters of a candidate are likely to issue positive
opinions on him/her

Soccer team supporters act similarly
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Social Media Endorsements as
Evidence of User Bias

Endorsements: interactions through which a user implicitly
agrees with another user w.r.t. a certain content:

retweet
@OfficialMyTeamProfile, @CandidateX.

like
Democrats, Republicans, New York Giants

pin, repin
people, companies, causes
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The Opinion Agreement Graph

Solid edge: two users endorse the same users

Dashed edge: two users are endorsed by the same users

Edge weight: the lift of the size of both sets
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The Opinion Agreement Graph

Attractors: seeds that represent a polarized group
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Transfer Knowledge to Sentiment Analysis

1 Collect data and identify attractors

2 Build the opinion agreement graph

3 Determine the bias of each user based on the attractor’s
messages endorsed by him/her

4 Analyze messages whose polarity is unknown through the
bias vectors of the users who endorse them
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Comparison to SVM

Competitive to SVM, despite not using labeled textual
data

SVM performance decreases over time, bias-based does
not
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Latest developments
WSDM’14

Users present self-report imbalances, that is, they

tend to report more positive emotions.
tend to report more extreme emotions.

We exploit such imbalances by

considering positive emotions to label data.
considering terms used in spikes in social streams.

Our social psychology-inspired framework produces
accuracies up to 84% while analyzing live reactions.
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Self-Report Imbalances

Social media: self-reported platforms [Rost et al.,
CSCW’13; Lin et al., WWW’13]

Opinions seen on social media are not a random sample of
the opinion population
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Self-Report Imbalances

Social media: self-reported platforms [Rost et al.,
CSCW’13; Lin et al., WWW’13]

Opinions seen on social media are not a random sample of
the opinion population
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Self-Report Imbalances

Social media: self-reported platforms [Rost et al.,
CSCW’13; Lin et al., WWW’13]

Opinions seen on social media are not a random sample of
the opinion population
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Positive-negative Self-report Imbalance

1 People tend to express positive feelings more than
negative feelings in social environments [Berger, 2013;
Diener, 1985; Larson, 1982]
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Extreme-Average Self-Report Imbalance

1 People tend to express extreme feelings more than
average feelings in social environments [Anderson, 1998;
Dellaroccas, 2006; Kiciman, 2012]

Figure: consequence: spikes tend to have meaningful, informative
terms
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Term arousal

classical feature representation: TF, TF-IDF...

problem: they are static and do not react quickly to new,
discriminative sentiment terms

we propose a term arousal representation:

wt,term =
Wt, term

Wt

(1)

intuition: informative “sentimental” terms should appear
more frequently in spikes
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Term arousal

classical feature representation: TF, TF-IDF...

problem: they are static and do not react quickly to new,
discriminative sentiment terms

we propose a term arousal representation:

wt,term =
Wt, term

Wt

(1)

intuition: informative “sentimental” terms should appear
more frequently in spikes
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Term arousal

Top 5 features according to TF-IDF...

win!

gol from team

an equalizer

go!

he shoots!

... and according our new metric term arousal:

great goal (7.53)

gooooooooool (6.80)

he scores (5.31)

GOOOOL (5.00)

penalty for team (3.34)
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Term arousal

Top 5 features according to TF-IDF...

win!

gol from team

an equalizer

go!

he shoots!

... and according our new metric term arousal:

great goal (7.53)

gooooooooool (6.80)

he scores (5.31)

GOOOOL (5.00)

penalty for team (3.34)
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Social Network Mining Challenges

Mining social networks must deal with:

Dynamic behavior

Complex relationships

Heterogeneous data

Incomplete information

Noisy data

Lack of scalability
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Web Observatory
observatorio.inweb.org.br

Motivation

There is an increasing use of the Web in events of overall
interest such as politics and sports.

Major motivations are the lack of a central control and the
fast information propagation.

Recently, there has been an emphasis on ”what you are
doing” instead of ”who you are”.

Challenge

Qualify, quantify, and summarize the content being exchanged
in the various Internet-related media on line and evaluate its
impact on specific events.
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Web Observatory

On line tool for capturing, analyzing and presenting the
dynamics of a given scenario on the Web.

Scenarios

Soccer World Cup

Olympics

Brazilian National Soccer League

Brazilian Elections

Public Safety

Brand reputation

Dengue Epidemics
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Background on dengue

Dengue is a mosquito-borne infection that causes a severe
flu-like illness, and sometimes a potentially lethal
complication

Approximately 2 billion people from more than 100
countries are at risk of infection and about 50 million
infections occur every year worldwide

Outbreaks tend to occur every year during the rainy
season but there is large variation of the degree of the
epidemic in areas with similar rainfall
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Background on dengue

Current strategies for prediction of dengue epidemics are
based on surveillance of insects, which provide only a
rough estimate of cases

Once disease outbreaks are detected in a certain area,
efforts need to be concentrated to avoid further cases and
to optimize treatment and staff - number of cases may
reach several hundred thousands

In Brazil, where there is a epidemics accounting system,
detection of important outbreaks may take a few weeks,
leading to loss of precious time to address the epidemy
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WebSci’11, Iberamia’14

To analyze how dengue epidemics manifests in Twitter
and to what extent that information can be used for
surveillance.

To design and implement an active surveillance framework
that analyzes how social media reflects epidemics based on
a combination of four dimensions: volume, location, time,
and public perception.

To exploit user generated content available in online social
media to predict the dengue epidemics.
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Methodology

Active dengue surveillance based on four dimensions:

Public perception
Volume
Location
Time

Methodology steps

Content analysis
Correlation analysis
Spatio-temporal analysis
Surveillance
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Content analysis

Determine the sentiment categories

Personal experience: “You know I have had dengue?”
Ironic/sarcastic tweets: “My life looks like a
dengue-prone steady water”
Opinion: “The campaign against dengue is very cool”
Resource: “Dengue virus type 4 in circulation”
Marketing: “Everybody must fight dengue. Brazil relies
on you”
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Content analysis

Sentiment distribution over time
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Content analysis

Is personal experience a good indicator of dengue’s incidence?
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Correlation Analysis

Manaus

Personal experience, notifications and symptom perception

From November, 2010 to May, 2011

Manaus
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Correlation Analysis

Manaus

Cross-correlation between personal experience and symptom
perception from November, 2010 to May, 2011
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Correlation Analysis

Rio de Janeiro

Personal experience, notifications and symptom perception

From November, 2010 to May, 2011
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Correlation Analysis

Rio de Janeiro

Cross-correlation between personal experience and symptom
perception from November, 2010 to May, 2011
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Spatio-temporal analysis

Evaluated two metrics

the volume of tweets

Rand Index = 0.8506

the PTPE value

Rand Index = 0.8914
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Spatio-temporal analysis

Evaluated two metrics

the volume of tweets Rand Index = 0.8506
the PTPE value Rand Index = 0.8914
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Spatio-temporal analysis

Evaluated two metrics

the volume of tweets Rand Index = 0.8506
the PTPE value Rand Index = 0.8914
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Surveillance

Strategy: Analize the ratio of personal experience tweets
weekely.

Intuition: a sudden increase in this ratio indicates a surge

Visual metaphors

maps
temporal graphs
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Dengue Observatory
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Dengue Observatory
Summary

Twitter data are useful for epidemics surveillance.

Enablers:

Dengue is an urban disease, as it is the Internet usage in
Brazil.
Dengue-related tweets are easy to collect.
People talk about dengue spontaneously.

Tweets associated with “personal experience” present high
correlation with dengue incidence.

Simple alarm systems are effective to detect dengue surges.
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Social Network Mining Challenges

Mining social networks must deal with:

Dynamic behavior

Complex relationships

Heterogeneous data

Incomplete information

Noisy data

Lack of scalability
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Scalability and Adaptability

Data mining algorithms are usually

Irregular

Intensive in terms of computing

Intensive in terms of I/O

Hard to parallelize!
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Twig: Adaptable, Scalable and Distributed FPM

Strategy

1 an adaptable and data-conscious partitioning scheme at
the granularity of transactions which provides a complete
and balanced distribution of the dataset, as well as of the
tree that the algorithm builds and its associated
projections, with a low communication overhead;

2 implementation in the filter-labeled stream paradigm, on
top of the Watershed programming framework
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Twig: Adaptable, Scalable and Distributed FPM
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Twig X Mahout
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How about Big Data?

Apr 15, 2015
Meira 92



Data Mining

InWeb

KD@InWeb

Data Mining

Graph Mining

Dynamic
behavior

Complex
relationships

Heterogeneous
data

Noisy data

Incomplete
information

Lack of
scalability

Data Science

Summary

What’s Big Data?

Big data is like teenage sex: everyone talks about it,
nobody really knows how to do it, everyone thinks
everyone else is doing it, so everyone claims they are
doing it...

Dan Ariely
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*DATA*
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What is Data Science?
Classical view
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What is Data Science?
Post NSA view
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Road to Data Science
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Big Data or Big User?

Data Scientist

Professional of the decade

“Quants” from 80s, Software engineers from 90s e Web
analysts from 00s

Profile

Analytical ability

Investigative capacity

Entrepreneurship

Business understanding

Programming skills
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Summary

Problem demands evolve faster than we think.

Maximizing quality and contributions is always a surviving
strategy.

Real problems help w.r.t. research relevance and enable
innovation.

Technically, big data has been here. The novelty is the big
user.

Data science formalizes the power shift to the big user.

Data mining has plenty of room for research, development
and innovation.
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Thank you! Questions?

Wagner Meira Jr.
meira@dcc.ufmg.br
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